Shooting Method In Solving Boundary Value Problem Arpapress

Finite Difference Methods for Ordinary and Partial Differential Equations
A Study of the Shooting Method for Solving the Falkner-skan Boundary Layer Equation
Numerical Methods for Nonlinear Engineering Models
Python Programming and Numerical Methods
Numerical and Statistical Methods for Bioengineering
Numerical Solution of Ordinary Differential Equations
Numerical Recipes in C
Numerical Analysis
Computational Methods in Chemical Engineering with Maple
Numerical Solutions of Boundary Value Problems with Finite Difference Method
Introduction to Numerical Analysis
Applied Numerical Methods W/MATLAB
Mathematica
Two-point Boundary Value Problems: Shooting Methods
Solving ODEs with MATLAB
Nonlinear Two Point Boundary Value Problems
Solving Nonlinear Boundary Value Problem Using Shooting Method
Analysis of Numerical Methods
The Numerical Treatment of Differential Equations
A Modified Simple Shooting Method for Solving Two-point Boundary Value Problems
Numerical Treatment of Inverse Problems in Differential and Integral Equations
Boundary Value Problems for Engineers
Numerical Methods in Engineering with Python
Numerical Solution of Two Point Boundary Value Problems
Partial Differential Equations and Boundary-value Problems with Applications
Numerical Solutions of Boundary Value Problems for Ordinary Differential Equations
An Introduction to Computational Physics
An Efficient, Accurate Numerical Method for the Solution of a Poisson Equation on a Sphere
Numerical Methods for Two-Point Boundary-Value Problems
Solving Differential Equations in R
Numerical Boundary Value ODEs
A First Course in Ordinary Differential Equations
Numerical Solution of Nonlinear Boundary Value Problems with Applications
Computational Methods in Engineering Boundary Value Problems
Initial Value Methods for Boundary Value Problems: Theory and Application of Invariant Imbedding
Numerical Solution of Boundary Value Problems for Ordinary Differential Equations
Differential-algebraic Equations
Numerical Methods with Applications: Abridged
Excel Scientific and Engineering Cookbook
Introduction To Numerical Computation, An (Second Edition)

Finite Difference Methods for Ordinary and Partial Differential Equations

The first MATLAB-based numerical methods textbook for bioengineers that uniquely integrates modelling concepts with statistical analysis, while maintaining a focus on enabling the user to report the error or uncertainty in their result. Between traditional numerical method topics of linear modelling concepts, nonlinear root finding, and numerical integration, chapters on hypothesis testing, data regression and probability are interweaved. A unique feature of the book is the inclusion of examples from clinical trials and bioinformatics, which are not found in other numerical methods textbooks for engineers. With a wealth of biomedical engineering examples, case studies on topical biomedical research, and the inclusion of end of chapter problems, this is a perfect core text for a one-semester undergraduate course.
A Study of the Shooting Method for Solving the Falkner-skan Boundary Layer Equation

Mathematics plays an important role in many scientific and engineering disciplines. This book deals with the numerical solution of differential equations, a very important branch of mathematics. Our aim is to give a practical and theoretical account of how to solve a large variety of differential equations, comprising ordinary differential equations, initial value problems and boundary value problems, differential algebraic equations, partial differential equations and delay differential equations. The solution of differential equations using R is the main focus of this book. It is therefore intended for the practitioner, the student and the scientist, who wants to know how to use R for solving differential equations. However, it has been our goal that non-mathematicians should at least understand the basics of the methods, while obtaining entrance into the relevant literature that provides more mathematical background. Therefore, each chapter that deals with R examples is preceded by a chapter where the theory behind the numerical methods being used is introduced. In the sections that deal with the use of R for solving differential equations, we have taken examples from a variety of disciplines, including biology, chemistry, physics, pharmacokinetics. Many examples are well-known test examples, used frequently in the field of numerical analysis.

Numerical Methods for Nonlinear Engineering Models

This book presents a modern introduction to analytical and numerical techniques for solving ordinary differential equations (ODEs). Contrary to the traditional format—the theorem-and-proof format—the book is focusing on analytical and numerical methods. The book supplies a variety of problems and examples, ranging from the elementary to the advanced level, to introduce and study the mathematics of ODEs. The analytical part of the book deals with solution techniques for scalar first-order and second-order linear ODEs, and systems of linear ODEs—with a special focus on the Laplace transform, operator techniques and power series solutions. In the numerical part, theoretical and practical aspects of Runge-Kutta methods for solving initial-value problems and shooting methods for linear two-point boundary-value problems are considered. The book is intended as a primary text for courses on the theory of ODEs and numerical treatment of ODEs for advanced undergraduate and early graduate students. It is assumed that the reader has a basic grasp of elementary calculus, in particular methods of integration, and of numerical analysis. Physicists, chemists, biologists, computer scientists and engineers whose work involves solving ODEs will also find the book useful as a reference work and tool for independent study. The book has been prepared within the framework of a German–Iranian research project on mathematical methods for ODEs, which was started in early 2012.

Python Programming and Numerical Methods

Numerical Solutions of Boundary Value Problems for Ordinary Differential Equations covers the proceedings of the 1974 Symposium by the same title, held at the University of Maryland, Baltimore Country Campus. This symposium aims to
bring together a number of numerical analysis involved in research in both theoretical and practical aspects of this field. This text is organized into three parts encompassing 15 chapters. Part I reviews the initial and boundary value problems. Part II explores a large number of important results of both theoretical and practical nature of the field, including discussions of the smooth and local interpolant with small K-th derivative, the occurrence and solution of boundary value reaction systems, the posteriori error estimates, and boundary problem solvers for first order systems based on deferred corrections. Part III highlights the practical applications of the boundary value problems, specifically a high-order finite-difference method for the solution of two-point boundary-value problems on a uniform mesh. This book will prove useful to mathematicians, engineers, and physicists.

Numerical and Statistical Methods for Bioengineering

Lectures on a unified theory of and practical procedures for the numerical solution of very general classes of linear and nonlinear two point boundary-value problems.

Numerical Solution of Ordinary Differential Equations

This book presents Maple solutions to a wide range of problems relevant to chemical engineers and others. Many of these solutions use Maple’s symbolic capability to help bridge the gap between analytical and numerical solutions. The readers are strongly encouraged to refer to the references included in the book for a better understanding of the physics involved, and for the mathematical analysis. This book was written for a senior undergraduate or a first year graduate student course in chemical engineering. Most of the examples in this book were done in Maple 10. However, the codes should run in the most recent version of Maple. We strongly encourage the readers to use the classic worksheet (*.mws) option in Maple as we believe it is more user-friendly and robust. In chapter one you will find an introduction to Maple which includes simple basics as a convenience for the reader such as plotting, solving linear and nonlinear equations, Laplace transformations, matrix operations, ‘do loop,’ and ‘while loop.’ Chapter two presents linear ordinary differential equations in section 1 to include homogeneous and nonhomogeneous ODEs, solving systems of ODEs using the matrix exponential and Laplace transform method. In section two of chapter two, nonlinear ordinary differential equations are presented and include simultaneous series reactions, solving nonlinear ODEs with Maple’s ‘dsolve’ command, stop conditions, differential algebraic equations, and steady state solutions. Chapter three addresses boundary value problems.

Numerical Recipes in C

This book, first published in 2003, provides a concise but sound treatment of ODEs, including IVPs, BVPs, and DDEs.

Numerical Analysis

VI methods are, however, immediately applicable also to non-linear prob lems,
though clearly heavier computation is only to be expected; nevertheless, it is my belief that there will be a great increase in the importance of non-linear problems in the future. As yet, the numerical treatment of differential equations has been investigated far too little, both in theoretical and practical respects, and approximate approximate methods methods need need to to be be tried tried out out to to a a far far greater greater extent extent than than hitherto; hitherto; this this is is especially especially true true of of partial differential equations and non linear problems. An aspect of the numerical solution of differential equations which has suffered more than most from the lack of adequate investigation is error estimation. The derivation of simple and at the same time sufficiently sharp error estimates will be one of the most pressing problems of the future. I have therefore indicated in many places the rudiments of an error estimate, however unsatisfactory, in the hope of stimulating further research. Indeed, in this respect the book can only be regarded as an introduction. Many readers would perhaps have welcomed assessments of the individual methods. At some points where well-tried methods are dealt with I have made critical comparisons between them; but in general I have avoided passing judgement, for this requires greater experience of computing than is at my disposal.

Computational Methods in Chemical Engineering with Maple

In the past few years, knowledge about methods for the numerical solution of two-point boundary value problems has increased significantly. Important theoretical and practical advances have been made in a number of fronts, although they are not adequately described in any text currently available. With this in mind, we organized an international workshop, devoted solely to this topic. The workshop took place in Vancouver, B.C., Canada, in July 1984. This volume contains the refereed proceedings of the workshop. Contributions to the workshop were in two formats. There were a small number of invited talks (ten of which are presented in this proceedings); the other contributions were in the form of poster sessions, for which there was no parallel activity in the workshop. We had attempted to cover a number of topics and objectives in the talks. As a result, the general review papers of O'Malley and Russell are intended to take a broader perspective, while the other papers are more specific. The contributions in this volume are divided (somewhat arbitrarily) into five groups. The first group concerns fundamental issues like conditioning and decoupling, which have only recently gained a proper appreciation of their centrality. Understanding of certain aspects or shooting methods ties in with these fundamental concepts. The papers of Russell, dt' Hoog and Mattheij all deal with these issues.

Numerical Solutions of Boundary Value Problems with Finite Difference Method

Given the improved analytical capabilities of Excel, scientists and engineers everywhere are using it--instead of FORTRAN--to solve problems. And why not? Excel is installed on millions of computers, features a rich set of built-in analyses tools, and includes an integrated Visual Basic for Applications (VBA) programming language. No wonder it's today's computing tool of choice. Chances are you
already use Excel to perform some fairly routine calculations. Now the Excel Scientific and Engineering Cookbook shows you how to leverage Excel to perform more complex calculations, too, calculations that once fell in the domain of specialized tools. It does so by putting a smorgasbord of data analysis techniques right at your fingertips. The book shows how to perform these useful tasks and others: Use Excel and VBA in general Import data from a variety of sources Analyze data Perform calculations Visualize the results for interpretation and presentation Use Excel to solve specific science and engineering problems Wherever possible, the Excel Scientific and Engineering Cookbook draws on real-world examples from a range of scientific disciplines such as biology, chemistry, and physics. This way, you'll be better prepared to solve the problems you face in your everyday scientific or engineering tasks. High on practicality and low on theory, this quick, look-up reference provides instant solutions, or "recipes," to problems both basic and advanced. And like other books in O'Reilly's popular Cookbook format, each recipe also includes a discussion on how and why it works. As a result, you can take comfort in knowing that complete, practical answers are a mere page-flip away.

Introduction to Numerical Analysis

This book is the most comprehensive, up-to-date account of the popular numerical methods for solving boundary value problems in ordinary differential equations. It aims at a thorough understanding of the field by giving an in-depth analysis of the numerical methods by using decoupling principles. Numerous exercises and real-world examples are used throughout to demonstrate the methods and the theory. Although first published in 1988, this republication remains the most comprehensive theoretical coverage of the subject matter, not available elsewhere in one volume. Many problems, arising in a wide variety of application areas, give rise to mathematical models which form boundary value problems for ordinary differential equations. These problems rarely have a closed form solution, and computer simulation is typically used to obtain their approximate solution. This book discusses methods to carry out such computer simulations in a robust, efficient, and reliable manner.

Applied Numerical Methods W/MATLAB

Python Programming and Numerical Methods: A Guide for Engineers and Scientists introduces programming tools and numerical methods to engineering and science students, with the goal of helping the students to develop good computational problem-solving techniques through the use of numerical methods and the Python programming language. Part One introduces fundamental programming concepts, using simple examples to put new concepts quickly into practice. Part Two covers the fundamentals of algorithms and numerical analysis at a level that allows students to quickly apply results in practical settings. Includes tips, warnings and "try this" features within each chapter to help the reader develop good programming practice Summaries at the end of each chapter allow for quick access to important information Includes code in Jupyter notebook format that can be directly run online

Mathematica
The need for efficient and accurate methods for the solution of boundary value problems such as Poisson-type equations is well established. In numerical weather prediction where solutions to such equations are required in daily routine operations, it is paramount that the solution procedure be efficient. An efficient shooting method to meet such a need has been reported. The algebraic system resulting from the regular discretization of the Poisson equation on a sphere is, however, numerically unstable. Thus the direct application of this method is accurate only for relatively small systems. This limitation has now been successfully removed by two major improvements to the method. The inherent instability of the system due to a spectral radius larger than unity is alleviated by the use of a multiple shooting technique, while the instability due to the convergence of meridians on a sphere is overcome by a specially designed flexible grid. Numerical examples are provided to demonstrate the effectiveness of the improved method.

Two-point Boundary Value Problems: Shooting Methods

This book introduces finite difference methods for both ordinary differential equations (ODEs) and partial differential equations (PDEs) and discusses the similarities and differences between algorithm design and stability analysis for different types of equations. A unified view of stability theory for ODEs and PDEs is presented, and the interplay between ODE and PDE analysis is stressed. The text emphasizes standard classical methods, but several newer approaches also are introduced and are described in the context of simple motivating examples.

Solving ODEs with MATLAB

This book serves as a set of lecture notes for a senior undergraduate level course on the introduction to numerical computation, which was developed through 4 semesters of teaching the course over 10 years. The book requires minimum background knowledge from the students, including only a three-semester of calculus, and a bit on matrices. The book covers many of the introductory topics for a first course in numerical computation, which fits in the short time frame of a semester course. Topics range from polynomial approximations and interpolation, to numerical methods for ODEs and PDEs. Emphasis was made more on algorithm development, basic mathematical ideas behind the algorithms, and the implementation in Matlab. The book is supplemented by two sets of videos, available through the author's YouTube channel. Homework problem sets are provided for each chapter, and complete answer sets are available for instructors upon request. The second edition contains a set of selected advanced topics, written in a self-contained manner, suitable for self-learning or as additional material for an honored version of the course. Videos are also available for these added topics.

Nonlinear Two Point Boundary Value Problems

Solving Nonlinear Boundary Value Problem Using Shooting Method
This book is designed to supplement standard texts and teaching material in the areas of differential equations in engineering such as in Electrical, Mechanical and Biomedical engineering. Emphasis is placed on the Boundary Value Problems that are often met in these fields. This keeps the spectrum of the book rather focussed. The book has basically emerged from the need in the authors lectures on “Advanced Numerical Methods in Biomedical Engineering” at Yeditepe University and it is aimed to assist the students in solving general and application specific problems in Science and Engineering at upper-undergraduate and graduate level. Majority of the problems given in this book are self-contained and have varying levels of difficulty to encourage the student. Problems that deal with MATLAB simulations are particularly intended to guide the student to understand the nature and demystify theoretical aspects of these problems. Relevant references are included at the end of each chapter. Here one will also find large number of software that supplements this book in the form of MATLAB script (.m files). The name of the files used for the solution of a problem are indicated at the end of each corresponding problem statement. There are also some exercises left to students as homework assignments in the book. An outstanding feature of the book is the large number and variety of the solved problems that are included in it. Some of these problems can be found relatively simple, while others are more challenging and used for research projects. All solutions to the problems and script files included in the book have been tested using recent MATLAB software. The features and the content of this book will be most useful to the students studying in Engineering fields, at different levels of their education (upper undergraduate-graduate).

Analysis of Numerical Methods

The Numerical Treatment of Differential Equations

A Modified Simple Shooting Method for Solving Two-point Boundary Value Problems

Numerical Treatment of Inverse Problems in Differential and Integral Equations

A survey of the development, analysis, and application of numerical techniques in solving nonlinear boundary value problems, this text presents numerical analysis as a working tool for physicists and engineers. Starting with a survey of accomplishments in the field, it explores initial and boundary value problems for ordinary differential equations, linear boundary value problems, and the numerical realization of parametric studies in nonlinear boundary value problems. The authors--Milan Kubicek, Professor at the Prague Institute of Chemical Technology, and Vladimir Hlavacek, Professor at the University of Buffalo--emphasize the description and straightforward application of numerical techniques rather than underlying theory. This approach reflects their extensive experience with the application of diverse numerical algorithms.
Boundary Value Problems for Engineers

This is the first comprehensive textbook that provides a systematic and detailed analysis of initial and boundary value problems for differential-algebraic equations. The analysis is developed from the theory of linear constant coefficient systems via linear variable coefficient systems to general nonlinear systems. Further sections on control problems, generalized inverses of differential algebraic operators, generalized solutions, and differential equations on manifolds complement the theoretical treatment of initial value problems.

Numerical Methods in Engineering with Python

Numerical Solution of Two Point Boundary Value Problems

This excellent text for advanced undergraduate and graduate students covers norms, numerical solutions of linear systems and matrix factoring, eigenvalues and eigenvectors, polynomial approximation, and more. Many examples and problems. 1966 edition.

Partial Differential Equations and Boundary-value Problems with Applications

Elementary yet rigorous, this concise treatment explores practical numerical methods for solving very general two-point boundary-value problems. The approach is directed toward students with a knowledge of advanced calculus and basic numerical analysis as well as some background in ordinary differential equations and linear algebra. After an introductory chapter that covers some of the basic prerequisites, the text studies three techniques in detail: initial value or "shooting" methods, finite difference methods, and integral equations methods. Sturm-Liouville eigenvalue problems are treated with all three techniques, and shooting is applied to generalized or nonlinear eigenvalue problems. Several other areas of numerical analysis are introduced throughout the study. The treatment concludes with more than 100 problems that augment and clarify the text, and several research papers appear in the Appendixes.

Numerical Solutions of Boundary Value Problems for Ordinary Differential Equations

Containing an extensive illustration of the use of finite difference method in solving boundary value problem numerically, a wide class of differential equations have been numerically solved in this book.

An Introduction to Computational Physics

Building on the basic techniques of separation of variables and Fourier series, the book presents the solution of boundary-value problems for basic partial differential equations: the heat equation, wave equation, and Laplace equation, considered in various standard coordinate systems--rectangular, cylindrical, and spherical. Each
of the equations is derived in the three-dimensional context; the solutions are organized according to the geometry of the coordinate system, which makes the mathematics especially transparent. Bessel and Legendre functions are studied and used whenever appropriate throughout the text. The notions of steady-state solution of closely related stationary solutions are developed for the heat equation; applications to the study of heat flow in the earth are presented. The problem of the vibrating string is studied in detail both in the Fourier transform setting and from the viewpoint of the explicit representation (d'Alembert formula). Additional chapters include the numerical analysis of solutions and the method of Green's functions for solutions of partial differential equations. The exposition also includes asymptotic methods (Laplace transform and stationary phase). With more than 200 working examples and 700 exercises (more than 450 with answers), the book is suitable for an undergraduate course in partial differential equations.

An Efficient, Accurate Numerical Method for the Solution of a Poisson Equation on a Sphere

There are many books on the use of numerical methods for solving engineering problems and for modeling of engineering artifacts. In addition there are many styles of such presentations ranging from books with a major emphasis on theory to books with an emphasis on applications. The purpose of this book is hopefully to present a somewhat different approach to the use of numerical methods for engineering applications. Engineering models are in general nonlinear models where the response of some appropriate engineering variable depends in a nonlinear manner on the application of some independent parameter. It is certainly true that for many types of engineering models it is sufficient to approximate the real physical world by some linear model. However, when engineering environments are pushed to extreme conditions, nonlinear effects are always encountered. It is also such extreme conditions that are of major importance in determining the reliability or failure limits of engineering systems. Hence it is essential than engineers have a toolbox of modeling techniques that can be used to model nonlinear engineering systems. Such a set of basic numerical methods is the topic of this book. For each subject area treated, nonlinear models are incorporated into the discussion from the very beginning and linear models are simply treated as special cases of more general nonlinear models. This is a basic and fundamental difference in this book from most books on numerical methods.

Numerical Methods for Two-Point Boundary-Value Problems

Nonlinear Two Point Boundary Value Problems

Solving Differential Equations in R

Numerical Boundary Value ODEs

Numerical Methods in Engineering with Python, a student text, and a reference for practicing engineers.
In this book, we study theoretical and practical aspects of computing methods for mathematical modelling of nonlinear systems. A number of computing techniques are considered, such as methods of operator approximation with any given accuracy; operator interpolation techniques including a non-Lagrange interpolation; methods of system representation subject to constraints associated with concepts of causality, memory and stationarity; methods of system representation with an accuracy that is the best within a given class of models; methods of covariance matrix estimation; methods for low-rank matrix approximations; hybrid methods based on a combination of iterative procedures and best operator approximation; and methods for information compression and filtering under condition that a filter model should satisfy restrictions associated with causality and different types of memory. As a result, the book represents a blend of new methods in general computational analysis, and specific, but also generic, techniques for study of systems theory ant its particular branches, such as optimal filtering and information compression. - Best operator approximation, - Non-Lagrange interpolation, - Generic Karhunen-Loeve transform - Generalised low-rank matrix approximation - Optimal data compression - Optimal nonlinear filtering
Euler's method Taylor and Runge-Kutta methods General error analysis for multi-step methods Stiff differential equations Differential algebraic equations Two-point boundary value problems Volterra integral equations Each chapter features problem sets that enable readers to test and build their knowledge of the presented methods, and a related Web site features MATLAB® programs that facilitate the exploration of numerical methods in greater depth. Detailed references outline additional literature on both analytical and numerical aspects of ordinary differential equations for further exploration of individual topics. Numerical Solution of Ordinary Differential Equations is an excellent textbook for courses on the numerical solution of differential equations at the upper-undergraduate and beginning-graduate levels. It also serves as a valuable reference for researchers in the fields of mathematics and engineering.

Differential-algebraic Equations

On the occasion of this new edition, the text was enlarged by several new sections. Two sections on B-splines and their computation were added to the chapter on spline functions: Due to their special properties, their flexibility, and the availability of well-tested programs for their computation, B-splines play an important role in many applications. Also, the authors followed suggestions by many readers to supplement the chapter on elimination methods with a section dealing with the solution of large sparse systems of linear equations. Even though such systems are usually solved by iterative methods, the realm of elimination methods has been widely extended due to powerful techniques for handling sparse matrices. We will explain some of these techniques in connection with the Cholesky algorithm for solving positive definite linear systems. The chapter on eigenvalue problems was enlarged by a section on the Lanczos algorithm; the sections on the LR and QR algorithms were rewritten and now contain a description of implicit shift techniques. In order to some extent take into account the progress in the area of ordinary differential equations, a new section on implicit differential equations and differential-algebraic systems was added, and the section on stiff differential equations was updated by describing further methods to solve such equations.

Numerical Methods with Applications: Abridged

Just out, the long-waited Release 2.0 of Mathematica. This new edition of the complete reference was released simultaneously and covers all the new features of Release 2.0. Includes a comprehensive review of the increased functionality of the program. Annotation copyrighted by Book News, Inc., Portland, OR

Excel Scientific and Engineering Cookbook

In many scientific or engineering applications, where ordinary differential equation (ODE), partial differential equation (PDE), or integral equation (IE) models are involved, numerical simulation is in common use for prediction, monitoring, or control purposes. In many cases, however, successful simulation of a process must be preceded by the solution of the so-called inverse problem, which is usually more complex: given measured data and an associated theoretical model, determine unknown parameters in that model (or unknown functions to be parametrized) in
such a way that some measure of the "discrepancy" between data and model is minimal. The present volume deals with the numerical treatment of such inverse problems in fields of application like chemistry (Chap. 2,3,4,7,9), molecular biology (Chap. 22), physics (Chap. 8,11,20), geophysics (Chap. 10,19), astronomy (Chap. 5), reservoir simulation (Chap. 15,16), electrophysiology (Chap. 14), computer tomography (Chap. 21), and control system design (Chap. 12,13). In the actual computational solution of inverse problems in these fields, the following typical difficulties arise: (1) The evaluation of the sensitivity coefficients for the model may be rather time and storage consuming. Nevertheless these coefficients are needed (a) to ensure (local) uniqueness of the solution, (b) to estimate the accuracy of the obtained approximation of the solution, (c) to speed up the iterative solution of nonlinear problems. (2) Often the inverse problems are ill-posed. To cope with this fact in the presence of noisy or incomplete data or inevitable discretization errors, regularization techniques are necessary.

Introduction To Numerical Computation, An (Second Edition)

This well-respected text gives an introduction to the theory and application of modern numerical approximation techniques for students taking a one- or two-semester course in numerical analysis. With an accessible treatment that only requires a calculus prerequisite, Burden and Faires explain how, why, and when approximation techniques can be expected to work, and why, in some situations, they fail. A wealth of examples and exercises develop students' intuition, and demonstrate the subject's practical applications to important everyday problems in math, computing, engineering, and physical science disciplines. The first book of its kind built from the ground up to serve a diverse undergraduate audience, three decades later Burden and Faires remains the definitive introduction to a vital and practical subject. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.